Jacob J. Peoples Curriculum Vitæ

PhD, Computer Science

Education

2016 - 2020	PhD Computing, Queen's University	
	Supervisor: Randy Ellis	
	Thesis: Composition of Transformations in Feature-Based Registration	
2014 - 2016	MSc Computing, Queen's University	Promoted to PhD
	Supervisor: Randy Ellis	
2010 - 2014	BScH Mathematical Physics, Queen's University	GPA: 4.15/4.3
	• Received the undergraduate medal in mathematical physics at graduation	

Publications

Journal Articles

- J2 K. Scott, D. Stuart, J. Peoples, G. Bisleri, and R. Ellis: Efficient Automatic 2D/3D Registration of Cardiac Ultrasound and CT Images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2020. (doi:10.1080/21681163.2020.1835555¹)
- J1 J. J. Peoples, G. Bisleri, and R. E. Ellis: Deformable multimodal registration for navigation in beating-heart cardiac surgery. *International Journal of Computer Assisted Radiology and Surgery*, 2019. (doi:10.1007/s11548-019-01932-2²)

Refereed Conference Papers

- C2 J. J. Peoples and R. E. Ellis: Composition of Transformations in the Registration of Sets of Points or Oriented Points. In *ShapeMI 2020: Shape in Medical Imaging*, 2020. (doi:10.1007/978-3-030-61056-2_1³)
- C1 J. Peoples and R. Ellis: A Generalizable Framework for Domain-Specific Nonrigid Registration: Application to Cardiac Ultrasound. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020. (doi:10.1109/ISBI45749.2020.9098434⁴)

Refereed Abstracts

- A2 M. S. Hefny, J. J. Peoples, M. L. Zec, D. R. Pichora, and R. E. Ellis: Topologically consistent triangulation for computer assisted surgery planning. In CARS 2016, International Journal of Computer Assisted Surgery (Suppl 1), 2016.
- A1 M. S. Hefny, **J. J. Peoples**, M. L. Zec, D. R. Pichora, and R. E. Ellis: Atlas-based scaphoid fixation planning. In *Proceedings of the Annual Meetings of CAOS-International*, 2016.

Preprints

Pr1 K. Cannon, C. Hanna, and **J. Peoples**: Likelihood-ratio ranking statistic for compact binary coalescence candidates with rate estimation. *arXiv preprint arXiv:1504.04632*, 2015.

Research Experience

2020/09 - Present	Post-doctoral Fellow, Queen's University
	• Conducting research on machine learning and radiomics applied to various clinical datasets and projects
	 Helping supervise and guide student research projects
2020/06 - 2020/08	Research Assistant, Queen's University
	• Early stage research into application of deep learning to brain tumour detection
	 Helping to design patient specific surgical guides for the spine
2016/09 - 2020/04	Graduate Researcher (PhD), Queen's University
	Research on nonrigid point set registration toward doctoral thesis

https://doi.org/10.1080/21681163.2020.1835555

²https://doi.org/10.1007/s11548-019-01932-2

³https://doi.org/10.1007/978-3-030-61056-2_1

⁴https://doi.org/10.1109/ISBI45749.2020.9098434

Jacob J. Peoples Curriculum Vitæ

	Selected Projects
	Point Set Registration
	 Developed novel algorithms for point set registration using state-of-the-art statistical methods
	 Implemented custom software using MATLAB, Python/TensorFlow and C++ Designed and conducted experiments for validation and testing of robustness
	Cardiac Image Registration
	 Developed a novel method of aligning intraoperative ultrasound and preoperative CT cardiac images
	- Implemented custom software in MATLAB and C++ to do the registration and analysis
	- Helped supervise and oversaw the onboarding of two undergraduate researchers
2014/09 - 2016/08	Graduate Researcher (Master's), Queen's University
	• Research on 3D mesh processing and statistical shape modeling toward Master's thesis
	Selected Projects
	Preprocessing 3D Mesh Geometry
	 Developed novel meshing algorithms to prepare data for an in-house statistical shape modeling algorithm
	 Implemented custom software in MATLAB and C++ to process 3D data
	Study of Wrist Surgery Planning
	- Oversaw clinician participants as they completed drill plans to be analyzed in the study
	 Conducted preprocessing on data with custom software and novel algorithms
2015/10 - 2016/01	Special Research Student, Nara Institute of Science and Technology
	• Research on statistical shape modeling of the liver using then state-of-the-art methods
	 Provided a seminar to hosting research group on shape modeling methods
2013/05 - 2013/08	Summer Undergraduate Researcher, Canadian Institute for Theoretical Astrophysics
	• Research and software development in Python as part of the LIGO Scientific Collaboration

Teaching Experience

2018 Winter	Teaching Fellow, Queen's University, Discrete Mathematics for Computing I (CISC102)
	• Sole instructor of mandatory first year computer science course with over 100 students
	 Responsible for lectures, office hours, and all other course materials
	• Worked with students requiring special accommodations to ensure all needs were met
	 Managed a team of teaching assistants to aid with grading and office hours
2017 Winter	Guest Lecturer, Queen's University, Continuous Coordinate Transformations (CISC881)
	• Provided 3 lectures on differential geometry (2017/01/14, 2017/01/16, 2017/03/28)
2016 Fall, 2014 Fall	Teaching Assistant, Queen's University, Discrete Mathematics for Computing I (CISC102)
	• Held office hours, graded and proctored tests, edited and suggested problems for exams
2015 Fall	Teaching Assistant, Queen's University, Logic for Computing Science (CISC204)
	Lead group tutorial sessions, graded and proctored tests

Awards and Honours

Research Scholarships

2017/09 – Present	NSERC PGS-D, CAD 21,000 per annum
2015/05 - 2016/04	NSERC Alexander G. Bell CGS-M, CAD 17,500
2016/09 - 2017/08	Queen Elizabeth II Graduate Scholarship in Science and Technology, CAD 15,000
2015/11 - 2016/01	JASSO Student Exchange Support Program for Short Term Study in Japan
2013/05 - 2013/08	NSERC Undergraduate Summer Research Award

Undergraduate Awards

All awards listed below were awarded by Queen's University

- 2014 Medal in Mathematical Physics, Dean's Honour List
- 2013 Dean's Honour List, Nellie and Ralph Jeffery Award in Mathematics

Jacob J. Peoples Curriculum Vitæ

- 2012 Dean's Honour List with Distinction, Susan Near Prize in Mathematics, Susan Near Prize in Physics, Dora and Beatrice Helmkay Scholarship in Mathematics
- 2011 Dean's Honour List with Distinction, William Coombs Baker Memorial Prize, Day Prize in Physics and Mathematics, Annie Bentley Lillie Prize in First Year Calculus, Principal's Scholarship
- 2010 Principal's Scholarship

Conference Presentations

Talks

- T2 **J. J. Peoples**, G. Bisleri, and R. E. Ellis: Deformable Multi-Modal Registration for Navigation in Beating-Heart Cardiac Surgery. Presented at IPCAI 2019, Rennes, France, by J. J. Peoples, 2019/06/19 (video⁵)
 - Chosen by audience vote after short talk given previous day
- T1 J. J. Peoples, G. Bisleri, and R. E. Ellis: Deformable Multi-Modal Registration for Navigation in Beating-Heart Cardiac Surgery. Presented at IPCAI 2019, Rennes, France, by J. J. Peoples, 2019/06/18 (video⁶)

Posters

P1 J. J. Peoples, G. Bisleri, and R. E. Ellis: Deformable Multi-Modal Registration for Navigation in Beating-Heart Cardiac Surgery. Presented at IPCAI 2019, Rennes, France, by J. J. Peoples, 2019/06/18 to 2019/06/19

⁵http://medialibrary.cars2019.org/mediatheque/media.aspx?mediaId=70854&channel=70776 ⁶http://medialibrary.cars2019.org/mediatheque/media.aspx?mediaId=70821&channel=70776